JOURNAL OF AIRCRAFT
Vol. 37, No. 1, January-February 2000

Nonlinear Aeroelastic Response of Delta Wing to Periodic Gust

Deman Tang,* James K. Henry,T and Earl H. Dowell*
Duke University, Durham, North Carolina 27708-0300

Anonlinearresponse analysisof a simple delta wing excited by periodic gustloadsin low subsonicflow is presented
along with a companion wind-tunnel test program. The analytical model uses a three-dimensional time-domain
vortex lattice aerodynamic method and a reduced order aerodynamic technique. Results for a single harmonic
gust and a continuous frequency sweep gust have been computed and measured for both flow velocities below and
above the flutter speed. A theoretical jump response phenomenon for the nonlinear structural model was observed
both for the single harmonic and the continuous frequency sweep gust excitation. Those results further confirm
some conclusions about limit cycle oscillations above the flutter speed and complement our earlier theoretical
and experimental studies. Also an experimental investigation has been carried out in the Duke wind tunnel using
a rotating slotted cylinder gust generator and an Ometron VPI 4000 scanning laser vibrometer measurement
system. The fair to good quantitative agreement between theory and experiment verifies that the present analytical
approach has reasonable accuracy and good computational efficiency for nonlinear gust response analysis in the
time domain. Without the use of reduced order models, calculations of the gust response for the nonlinear model

treated here would be impractical.

Nomenclature

a;, b; = generalized coordinatesin x and y directions,
respectively

c = delta wing root chord

D = delta wing plate bending stiffness

E = Young’s modulus

h = delta wing plate thickness

km, kn = numbers of vortex elements on delta wing in x and
y directions, respectively

kmm = total number of vortices on both the delta wing and
wake in the x direction

L = delta wing span

m = delta wing panel mass/area, /1p,,

mxy = number of delta wing modal functionsin the x and
y planes defining u# and v

nxy = number of delta wing modal functionsin the z
direction defining w

QY = generalized aerodynamic force

q.9 = state space vector

qn = generalized coordinate in the z direction

R, = size of reduced order aerodynamic model

R, Ry, R, =rotational deflectionsin x, y, and z directions

t = time

U = airspeed

Up = critical flutter velocity

U, V; = modal functionsin x and y directions

u,v = in-plane displacements

Wi = transverse modal function in z direction

w = plate transverse deflection

W, Weo = nondimensionallateral gust velocity and amplitude

X, Y = right and left eigenvector matrices of vortex lattice
eigenvalue model

X,y = streamwise and spanwise coordinates

VA = eigenvalue matrix of vortex lattice

aerodynamic model
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z = normal coordinate

r = vortex strength

Ap = aerodynamic pressure loading on panel

Ap = nondimensional aerodynamic pressure,
Ap/(po U?)

At = time step, Ax/ U

Ax = plate element length in the streamwise direction

0 = state space vector

v = Poisson’s ratio

Poos P = air and plate densities

T = time parameter, /(mc*/ D), s

10} = frequency

=d( )ydt

Introduction

HE study of atmospheric turbulence and its influence on air-

craft operation and design has been of concern to many in-
vestigators. Areas of interest have included the measurement and
modeling of atmospheric turbulence, as well as the response and
structural design of aircraft encountering such turbulence or gusts.
In the late 1980s, the Federal Aviation Administrationrequested as-
sistance from NASA for initial evaluation of a candidate method for
analysis of gust loads on aircraft with nonlinearities. The statistical
discretegust (SDG) method! has been proposedto permitanalysisof
nonlinear aircraft models for gustloads. As a time-domain method,
it would also permit the computation of time-correlated gust loads.
NASA conducted an evaluation of the SDG method, focusing on its
relationship to existing linear methods.

Recently, a three-dimensionaltime-domain vortex lattice aerody-
namic model and reduced order aerodynamic technique was used**
to investigate the flutter and limit cycle oscillation (LCO) char-
acteristics of cantilevered low aspect ratio, rectangular and delta
wing-plate structure models at low subsonic flow speeds. It has
been shown that for a plate restrained at its root, bending/tension
or geometrical nonlinearities can produce LCO amplitudes of the
order of the plate thickness. A wind-tunnel model has been tested
to provide a quantitative experimental correlation with the theoret-
ical results for the LCO response itself.> In the present paper this
method is extended to calculate and measure gust response when
the time-correlated gust loads are known.

A few years ago, a rotating slotted cylinder (RSC) gust generator
was installedin the Duke University low-speed wind tunnel and was
used to generate a gust excitation field including a sinusoidal gust
or a linear frequency sweep gust excitation® This gust field can also
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simulate turbulence with a uniform power spectral density over a
certain frequency band in the lateral and longitudinal directions-®

Following the work of Ref. 5, in the present paper we develop a
mathematical model and computational code in the time domain to
calculate the nonlinear gust response of a delta wing model at low
subsonic flow speeds. Sinusoidal and linear frequency sweep gust
loads are used. To validate the theoretically predicted gust response
characteristics of the delta wing, an experimental investigation has
been carried out in the Duke University wind tunnel using an RSC
gust generatorand an Ometron VPI 4000 scanninglaser vibrometer
measurementsystem9 tomeasure deflections (velocities) of the delta
wing. The results may be helpfulin better understanding physically
the nonlinear aeroelastic response of a delta wing model to gust
loads.

State-Space Equations

A schematic of the delta wing-plate geometry with a three-
dimensional vortex lattice model of the unsteady flow is shown
in Fig. 1. The aeroelastic structure/fluid state-space equations are
described as follows.

Nonlinear Structural Equations

The nonlinear structural equations were derived from Hamilton’s
principleand the Lagrange equationsbased on the von Karmdn plate
equations using the total kinetic and elastic energies and the work
done by applied aerodynamic loads on the plate. Modal expansions
for the plate deflection are substituted into the energy expressions
and then into Lagrange’s equationsto yield equations of motion for
each structural modal coordinate. As is well known, von Karman’s
plate equations take into account the nonlinear coupling between in-
plane and out-of-planeplate motion as a result of retaining quadratic
terms in the strain-displacement equations. Physically there is a
stiffening of the plate due to an in-plane tension that increases
quadratically with increasing out-of-plane displacement.

We expand the transverse or out-of-planedisplacementw and the
in-plane displacements u and v as follows:

u= > a(OUix,y) M

V= bi(nV(x,y) 2)
J

w= D ) Wilx, y) 3)
k

where the transverse natural mode function Wy (x, y) is calculated
using a two-dimensional finite element method for the delta wing
plate based on a standard computational code. The in-plane natural
mode functions U;(x, y) and V;(x, y) are calculated using a three-
dimensional finite element method for the delta wing. In this latter
computationalmodel, the transversedisplacementw is constrained,
and only the in-plane mode functions are extracted. These functions
satisfy the boundary conditions of the cantilevered delta wing.

Here, a;, b;, and g, are normalized by the plate thickness /4 and
x and y by c and L, respectively.

It is assumed that all of the nonconservative forces act in the
z direction only and the in-plane inertia may be neglected. Thus,
the in-plane equations of motion are determined from the stretch-
ing strain energy and Lagrange’s equation. The nondimensionalin-
plane (u, v) equations are then

2. Chay+ X, Clby =C @
P 8
2. Dyay+ 2, Dby =D’ (5)
P 8

where C/ and D* are nonlinear (quadratic) functions of the delta
wing transverse deflection. For details of the coefficient terms
c), Cy, D3, and D} and the terms C/ and D*, see Ref. 5.

The transverse equation is formed by substituting the kinetic,
bending, and stretching energy expressions into Lagrange’s equa-
tion. The nondimensionalequation is

Fk k
Z Al;; [qm + 2wm§mq.m + wﬁ,qm + _12\/ + _2 =0 (6)
T T

m

where AX are constant coefficient terms and F¥ is a (nondimen-
sional) nonlinearforce that depends on the deflection of the plate (for
details, also see Ref. 5). Note that &, and w,, are the mth structural
modal damping and natural frequency. Q* is the nondimensional-
ized generalized aerodynamic force see [Eq.(12)]. We will discuss
it next.

Aerodynamic Equations: Vortex Lattice Model

We assume that a spanwise uniform periodic lateral gust is used,
thatis, the gust velocity is only a function of chordwise positionand
time, w, = w,(x, t), and it is normalized by airspeed U. The gust
wavelength is defined as

l,=Ulo

where o is the gust excitation frequency in hertz.
A continuous sinusoidal gust time history at the x; position on
the delta wing may be expressed as follows:

Wwo(x, 1) =wyosinrot — Ag) @

where a phase differenceis defined as A =27x;/ .
A continuous frequency sweep gust is also considered. It is ex-
pressed as

2n(@ — o) ,

T —A¢ ®)

Wwe(x, 1) =wyysin| 2o, +

where oy, @,, and T are the minimum frequency, maximum fre-
quency, and the sweep duration respectively.

The flow about the cantilever plate is assumed to be incompress-
ible, inviscid, and irrotational. We use an unsteady vortex lattice
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Fig. 1 Aeroelastic model of a delta wing; aerodynamic vortex lattice grid is shown, a finite element grid for the structural model is also used.
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method to model this flow. A typical planar vortex lattice mesh for
the three-dimensional flow is shown in Fig. 1. The delta wing and
wake are divided into a number of elements. In the wake and on the
wing, all of the elements are of equal size, Ax, in the streamwise
direction. Point vortices are placed on the plate and in the wake at
the quarterchord of the elements. At the three-quarterchord of each
plate element, a collocation point is placed for the downwash, that
is, we require the velocity induced by the discrete vortices to equal
the total downwash arising from the unsteady motion of the delta
wing and also the gust. Thus, we have the relationship

kmm

wit! ZK gt i=1,....km (9

ij J

where w!* ! is the total downwash at the ith collocation point at time
stept + 1, T'; is the strength of the jth vortex, and K;; is an aero-
dynamic kernel function. As described in Ref. 4, an aerodynamic
matrix equationis given by

A" 4+ BT =w' ! (10)

where A and B are aerodynamic coefficient matrices.
From the fundamental aerodynamic theory, the nondimensional
pressure is given by

c rt+l r:

Ap; == S E— Z(r”‘ -T) (11)

and the aerodynamic generalized force is calculated from

W U2c et
of = %] j ApW, dxdy (12)
0 0

Aeroelastic State-Space Equations

Consider a discrete time history of the delta wing, ¢g(t), with a
constantsampling time step At. The sampled version of g(#) is then
defined by

q=(q""+q"/2
and the velocity of this discrete time series is defined by
q=(q""" —q)/ At

The structuraldynamic equations (6) can be reconstitutedas a state-
space equation in discrete time form, that is,

L
D0 + D@ +CT T+ =—F,? (13)

where the vector @ is the state of the plate, {8} = {¢, ¢}, and D,
and D, are matrices describing the plate structuralbehavior. C; and
C, are matrices describing the vortex element behavior on the delta
wing itself.

There is a linear relationship between the downwash w at the
collocation points due to wing motion and the delta wing response
0. Itis defined by

w=EO (14)
In addition, of course, there is a downwash due to the gust given by

Eq. (7) or Eq. (8). Thus, we obtain acomplete aeroelasticstate-space
equation in matrix form,

A —E F t+1 B 0 F t W;+l
+ =
¢ Do c, D|]e o

(15)

ol

Reduced Order Aerodynamic Model

If we assume the structural response to be zero and no gust exci-
tation, then from Eq. (10) one obtains a representation of unforced
fluid motion,

AT+ BT =0 (16)

From Eq. (16), an aecrodynamiceigenvalue problem may be formed.
Because the matrices A and B are nonsymmetric, we must compute
the right and left eigenvalues and eigenvectors of the generalized
eigenvalue problem.

Let X and Y be the right and left eigenvector matrices, and Z is
a diagonal matrix whose diagonal entries contain the eigenvalues.
The right and left eigenvectors are orthogonal with respect to the
matrices A and B. We normalize the eigenvectorssuch that they are
orthonormal with respectto A.

Let the point vortex vector I' be a linear combination of the R,
right eigenvectors (where usually in practice R, < total number of
aerodynamic eigenvalues), that is,

F=XRaY

where Yy is the vector of the aerodynamic modal coordinates. To
account for the neglected eigenmodes, therefore, we use a quasi-
static correction that accounts for much of their influence. Let

F= F&' + Fd = F&' + XRaYd

where the first term on the right-hand side is a quasi-static solution
of the vortex flow and the second term is a dynamic perturbation
solution. By definition, the quasi-static portion Iy is given by

[A+ B =w' + W, 17

where w' and w are the downwashes at time step f. Compare
Eqgs. (10) and (17) Note Eq (17) may be inverted once to deter-
mine I in terms of w' + w and does not need to be evaluated at
each tlme step.

Thus, the reduced order model with static correctionis given by

I —YI I —AA+B)E] (v '

CX ra D, + C,(A+ B)'E 0
. [ —Zp, +Y! B(A+B)'E 7]
| C\Xre Di+Ci(A+ B)'E 0

4% Trr_ -1
_ (; } +[YR0[IC A+ B) J]{Wg}m
—rIy —Cy(A + B)

—YTBA+B 1
( )" ]{g},

—Ci(A+ B)™! (18)

Numerical Results and Discussions

The mathematical model is a simple delta wing configuration
with a leading edge sweep of 45 deg. The model was constructed
from —-1n -thick plastic (Lucite material) plate. Poisson’s ratio is
v=0. 45 A structural modal damping ratio of 0.04 (determined
from experiment) was used for all modes.

The theoretical prediction is based on Eq. (18). We use the aero-
dynamic vortex lattice model including 120 vortex elements on
the delta wing (km =kn =15), 525 vortex elements in the wake
(kmm =50), and 9 reduced aerodynamic eigenmodes R, =9. The
vortexrelaxationfactor was takentobe a =0.992 (Ref. 3). The delta
wing structural modal numbers were nxy =10 in the out-of-plane
and mxy =10 in the in-plane directions, respectively. The mesh
of the finite element model for the out-of-plane structural model
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Fig. 2 Theoretical linear frequency sweep time histories.

is 30 X 30, and thus, the delta wing was modeled using 900 quadri-
lateral plate elements. The mesh of the three-dimensionalfinite ele-
ment model for the in-plane structuralmodelis 30 X 30 X 1, and the
delta wing was modeled using 961 solid elements with 1921 nodes.
The nodes at the clamped root chord satisfy geometric boundary
conditions, thatis, w =u =v =R, =R, =R, =0.

The theoretical first 10 natural frequenciesare 7.47,29.61,33.84,
70.27, 83.78,107.01, 132.95, 143.91, 153.67, and 180.58 Hz. The
theoretical flutter velocity of this model without a gust is 40.25 m/s,
and the corresponding flutter frequency wp is 21.25 Hz.

The theoreticallateral gust velocity amplitude w g is 0.75 deg for
both single harmonic and linear frequency sweep gust loads. For
the latter, the minimum and maximum frequencies are 0 and 40 Hz,
and the sweep duration T is 2.8 s, [recall Eq. (8)].

Figures 2a and 2b show the theoretical linear frequency sweep
time histories. Figure 2a is an increasing linear frequency sweep
process from O to 40 Hz and Fig. 2b is a decreasing sweep process.

Results for Flow Velocities Lower Than Uy

A typical frequency-response curve at the measurement point
located near the tip of delta wing is shown in Fig. 3 for U =20 m/s
obtained from a single harmonic excitation. An rms value is shown
because the responseis not a pure harmonic motion. When different
initial conditions were used, we can obtain two different response
amplitudes, as shown by the solid and broken lines. When the exci-
tation frequency continually increases from 0 to 40 Hz, the results
are shown by the solid line. The results for decreasing frequency
are shown by the broken line. There is a jump response because
of the bending/fension or geometrical nonlinearities of the delta
wing plate. For comparison, a result from a linear structural model
[i.e., Fy =0in Eq. (18)] is also plotted in Fig. 3, as shown by the
dash-dot line. The nonlinear response generally has a higher reso-
nant frequency and smaller amplitude than that for the linear system.
Note the resonant frequency of the linear systemis 8.5 Hz. From a
fast Fourier transform (FFT) analysis, a 3o frequency component

Displacement amplitude (rms), mm

0 5 10 15 20 25 30
Frequency,Hz

Fig. 3 Frequency response curve to the singleharmonic gust excitation
for U =20 m/s.
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Fig. 4 Gust response time history to a linear frequency sweep gust
load, for U = 20 m/s.

response caused by the geometrical nonlinearity is observable (this
is not shown in Fig. 3, which is the rms response).

Typical theoreticalresults for the transverseresponse near the tip
of delta wing to a frequency sweep gust excitation are shown in
Figs. 4a and 4b for U =20 m/s. Figure 4a corresponds to an in-
creasing linear frequency sweep gust excitation and Fig. 4b to a de-
creasing frequency sweep. From the envelope of this time response,
there is a jump phenomenon for both gusts, but the time correspond-
ing to the maximum response amplitude is different. One is 2.25 s
corresponding to an excitation frequency o =15 Hz (Fig. 4a), and
the other is 3.19 s corresponding to @ =11.56 Hz (Fig. 4b). For a
linear frequency sweep gust, an instantaneous frequency is defined
by

0=—=w + ——t (19)
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To characterize the nonlinear gust response behavior in an ap-
proximate way, we form an average envelope from the upper and
lower envelope of this time response, and then transfer this averaged
envelope to a frequency response curve using Eq. (19), as shown in
Fig. 5. The response amplitude is taken as a peak value correspond-
ing to each excitation frequency. The right and left arrows indicate
a sweep direction. Compare these results with those in Fig. 3 for
a single frequency excitation; the two curves are nearly the same
beyond the resonant frequency range. Note in particular they show
the same jump trends.

Results for Flow Velocities Higher Than Ur

As is known from Ref. 5, the delta wing model has an LCO
when the flow velocitiesare higher than Uy ( without a lateral gust).
Now with the gust excitation applied, typical frequency response
(rms) curves near the tip of the delta wing are shown by a solid
line (increasing frequency excitation) and a broken line (decreasing
frequency excitation) in Fig. 6 for U =44 m/s as obtained from a
single harmonic excitation. When @ =0 Hz, the response amplitude
is equal to the LCO value and the oscillation frequency is 22.2 Hz.
When @ =0.1 Hz, the vibration behavior is entirely changed, as
shown in Fig. 7, where clearly the time history is no longer simple
harmonic. Figure 8 shows a typical time history and corresponding
FFT for o =12 Hz. Again we found there is a detectable 3w fre-
quency component in addition to a dominant w component for this
nonlinear system.

Similar to Fig. 4, a theoretical result for the transverse response
near the tip of delta wing to a frequency sweep gust excitation is
shown in Figs. 9a and 9b for U =44 m/s. It is seen that the gust load
is initiated at 1.2 s. Before that time, a natural LCO is shown. From
an averaged envelope of this time response, a jump phenomenon for
both sweep excitationsis found. The jump occursat2.25s for Fig. 9a
and 3.19 s for Fig. 9b. The instantaneous gust excitationfrequencies
corresponding to these jump times are @ =25 and 21.7 Hz. The
results are very similar to those for U =20 m/s.
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Fig. 5 Envelop behavior of a linear frequency sweep gust load for
U =20 m/s.
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Fig. 6 Frequency response curve to the singleharmonicgustexcitation
for U =44 m/s.
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Fig. 7 Time history of gust response to a single harmonic excitation at
w = 0.1 Hz for U = 44 m/s.
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Fig. 8 Gust response to a single harmonic excitation at w = 12 Hz for
U =44 m/s.

When we decrease the gust strength w, from 0.75 to 0.1 deg,
the natural LCO behavior has a relatively greater influence on the
gust response. Figure 10 shows a theoretical result for the trans-
verse responsenear the tip of the delta wing to the frequency sweep
gustexcitationfor U =44 and w, =0.1 deg. Comparing Fig. 10 to
Fig. 9, we find three differences:

1) The response amplitude becomes smaller for the whole fre-
quency range for the smaller gust excitation.

2) The jump phenomenonat the higher frequency disappears,and
the frequency response curves made from an averaged envelope of
these time responses are very similar for both the increasing and
decreasing linear frequency sweep processes. This means that the
smaller gust load is not sufficient to excite a jump response of the
nonlinear system.

3) The natural LCO behaviorhas a larger relative influence in the
gust response for the smaller gust excitation.
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Fig. 9 Gust response time history to a linear frequency sweep gust
load, for U = 44 m/s and wg = 0.75 deg.
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Fig. 10 Gust response time history to a linear frequency sweep gust
load, for U =44 m/s and wgg = 0.1 deg.

1.8
16 | -
1.4 - B

12 i[

0.8 fr

FFT of displacement response,mm

0.6 h _
04 H _
0.2 —\‘\ w=30,gust+LCO -
o bemzassadfAly S L i L
0 10 20 30 40 50 60 70 80
Frequency,Hz

Fig. 11 FFT analysis of gust response to the single harmonic excita-
tion at frequencies w = 1, 10, 20, 25, and 30 Hz, for U = 44 m/s and
Wweo = 0.1 deg.
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Fig. 12 Gust response to a single harmonic excitation at w = 30 Hz for
U =44 m/s and wg = 0.1 deg.

To confirm these results, gust responses to a single harmonic
excitation at @ =1, 10, 20, 25, and 30 have been calculated. The
results are shown in Fig. 11 for an FFT analysis of the displacement
response.Itisfoundthatthereis amaximumamplitudeat @ =10Hz,
which correspondsto r =1.94 s in Fig. 10a.

Figure 12 shows the time history and the corresponding FFT
analysis for @ =30 Hz. In Fig. 12b, a dashed line indicates the
result from the natural LCO for reference, that is, @ =0 Hz, and
the solid line is for @ =30 Hz. Also from Fig. 12a we find the time
history of response includes a strong LCO component. Note the
gust excitation in this case acts to quench or diminish the LCO. Of
course, such a result can only occur for a nonlinear system.

To summarize this subsection, Fig. 13 showing nondimensional
transverse displacement (rms) near the tip of the delta wing vs flow
velocity has been prepared for a range of gust frequency, ® =0, 1,
10, and 20 Hz and a gust strength of w, =0.75 deg. For w =0, this
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Fig. 13 Nondimensional transverse displacement (rms) vs the flow
velocity for gust frequencies w = 0, 1, 10, and 20 Hz and gust strength
weo = 0.75 deg.

curve indicatesa natural LCO as describedin Ref. 5. For ® =10 Hz,
the response has a jump at a flow velocity U =8 m/s. For flow ve-
locities lower than U =8 m/s, the gust responses are small, but for
larger flow velocities, the gust responses become large and increase
with increasing flow velocity. These response amplitudes are larger
than the natural LCO amplitude. As the flow velocity increases
and exceeds a certain value, the aeroelastic system can undergo
nonlinear resonant response due to a dynamic coupling between
the aerodynamics and the nonlinear dynamic structural deflection.
Thus, a jump phenomenon occurs, and a larger oscillation occurs.
These phenomena also occur for higher frequency gust loads, as
shown for @ =20 Hz. Compare the results from @ =10 Hz to those
from o =20; the jump velocity (U =31 m/s) and the response am-
plitude (after the jump) of the latter are larger than those of the
former.

Correlation Between Theoretical
and Experimental Results

The experimentalmodel has the same parametersas in the numer-
ical example discussed earlier. The root chord was locally clamped
(cantilevered), and the length of the cantilever root was 9 in. (60%
root chord). The clamping was symmetric about the center of the
root chord of the model. The length of the root chord was 15 in.
The clamped root of this model is fixed on a root support mecha-
nism that is placed at the top of the tunnel. The delta wing model
is mounted in a vertical position in the center of the test sec-
tion that eliminates gravitational preload in the out-of-plane direc-
tion. To avoid the effect of the wind-tunnel body vibration on the
model response, the root support mechanism of the model was sep-
arated from the ceiling of the tunnel. The mechanism is directly
mounted to a heavy support frame that is supported to the ground.
The experimental first four natural frequenciesare 7.5, 31, 35, and
76 Hz. The agreement with the corresponding theoretical results
is good.

The gust was created by placing an RSC behind an airfoil up-
stream of the delta wing model. The gust generator configurationin
the wind tunnel had two airfoils or vanes and two RSCs. The dis-
tancebetweenthese vanes was 12 in. For details of the gust generator
design, see Ref. 6.

Structural response measurements were made using the Ometron
VPI 4000 scanning laser vibrometer system.” The VPI sensor is a
noncontacting transducer that uses optical interferometry and elec-
tronic frequency measurements to determine the frequency shift of
a beam of light reflected from a moving surface. The system then
uses frequency tracking methods to convert the frequency shift to
an analog voltage corresponding to the velocity of the moving sur-
face. Because there is no contact between the laser and the delta
wing, the system is capable of making point velocity FFT or power
spectrum measurements without altering the dynamics of the delta
wing or the flow acrossit. A photograph of the wind-tunnel model,
gust generator, and the laser vibrometer system is shown in Fig. 14.

Gust]
generator

Laser
vibrometer

Fig. 14 Wind-tunnel model, gust generator, and the laser vibrometer
system.
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Fig. 15 Lateral gust of single harmonic gust excitation for v = 9.5 Hz
and U = 20 (m/s).
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Fig. 16 Velocity frequency response to the single harmonic gust exci-
tation for U = 20 m/s.
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Single Harmonic Gust Excitation

A typical measured gust angle (lateral gust wave) generated by
the RSC gust generatoris shownin Fig. 15a for an airstream velocity
of U =20 m/s and cylinder rotation speed of w, =5 Hz. The gust
dominant frequency has been shown to be 2w,. A corresponding
FFT plotis shown in Fig. 15b. The gust angle of the first harmonic
frequency (2w, =10 Hz) is 0.75 deg, and the second harmonic
(4, =20 Hz) is 0.1 deg. See Ref. 6 for a discussion of gust field
measurement.
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Fig. 17 Measured velocity response to the single frequency gust exci-
tation for w = 10.5 Hz and U = 20 (m/s).
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Figure 16 shows a velocity frequency response curve near the
tip of the delta wing for flow velocity U =20 m/s. The theoretical
results are shown by a solid line and the experimental results are
shown by a dashed line with a A. Note that in Fig. 16 the measured
velocity response is not a pure harmonic motion; therefore, we use
an average rms method to characterize the response for correlation
purposes. The samplingrate is 256 point/s, At =1/256,and the total
samplinglengthis 600 points. The measuredrms velocity W, is de-
termined from these data. The quantitative agreementis reasonably
good. The experimental first resonant frequency is about 12 Hz,
which is lower than the theoretical value (15 Hz). This is because
the present experimental apparatus does not give a pure tone lateral
sinusoidal gust wave. Thus, it is more difficult to obtain an exper-
imental jump phenomenon than if we had a pure single harmonic
gust excitation.

Figure 17 shows a typical velocity time response (Fig. 17a) and
a corresponding FFT analysis (Fig. 17b). The dominant frequency
response component is located at the frequency @ =10.5 Hz, and
there are the detectable2w and 3w frequencycomponentsin addition
to a dominant @ component for this measured nonlinear system.

Figure 18 shows the vibration shape of the delta model during the
steady-state vibration and the correlation between theoretical and
experimental nondimensional transverse rms velocity amplitude at
U =20 m/s and @ =10 Hz. The agreement is reasonably good.
Note that in the present experiment the measured rms velocity is
normalized by hop.

Figure 19 shows the theoretical (solid line) and experimental
nondimensional transverse velocity (rms) near the tip of the delta
wing vs flow velocity for a range of gust frequencies, w =0, 10, and
20 Hz. The brokenline with symbols <, O, and A indicate @ =0, 10,
and 20 Hz, respectively, from the experiment. These results show
a good agreement between the theory and experiment, although we
did notfind the predicted theoreticaljump phenomenonat U =8 m/s
for ® =10 Hz and at U =31 m/s for @ =20 Hz. This may also be a
result of the experimental gust excitationhaving multiple frequency
components.

Continuous Frequency Sweep Gust Excitation

A continuous lateral gust wave generated by the linear frequency
sweep RSC/airfoil experimental system for an airstream velocity of
U =20 m/s and a cylinder rotation speed from O to 20 Hz, that is,
gust excitation frequency from 0 to 40 Hz, is shown in Fig. 20a.
There are 10 sweep periodsin 34 s, and the total sampling length is

Nondimensional, x/c

Fig. 18 Vibration shape and correlation between theoretical and experimental nondimensional transverse velocity amplitude for w = 10.5 Hz and

U =20 m/s.
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Fig. 19 Theoretical and experimental nondimensional transverse ve-
locity (rms) vs the flow velocity for gust frequencies w = 0,10, and 20 Hz.
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Fig. 20 Measured continuous lateral gust of linear frequency sweep
gust excitation for w = 0-40 (Hz) and U = 20 (m/s).
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Fig. 21 Theoretical and experimental PSD of the lateral gust excita-
tion.
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Fig. 22 Measured gust response to continuous lateral gust for
U =20 (m/s).
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Fig. 23 Theoretical and experimental PSD of the velocity response to
the lateral gust excitation for U = 20 (m/s).

51,200 points. Figure 20b shows a typical lateral gust wave of one
sweep period. The gust wave is not a pure uniform linear frequency
sweep. The average angle of the linear frequency sweep gust is
about 0.75 deg. It is noted that the measured lateral gust has about
a 0.7-s time delay, that is, the restarting time of the dc motor for
each repeated cycle. This is due to the rotational inertia of the dc
motor. A corresponding power spectra density (PSD) plot is shown
by a broken line in Fig. 21, based on an average over 10 sweep
periods.

For comparison with the experimental results, a theoretical PSD
plotis calculatedfrom a continuousfrequency sweep gust excitation
(the time history is shown in Fig. 2a) as shown by a solid line of
Fig. 21. The result is obtained by using Eq. (8) and one sweep
period. The theoretical results (solid line) and the experiment data
(broken line) are in reasonably good agreement.

Figure 22 shows a measured velocity response to a continuous
lateral gust wave excitation for a flow velocity of U =20 m/s.
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Fig. 24 Measured gust response to continuous lateral gust for
U = 44 (m/s).
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Fig. 25 Theoretical and experimental PSD of the velocity response to
the lateral gust excitation for U = 44 (m/s).

Figure 22a is for the first 10 sweep periods, as shown in Fig. 20a,
and Fig. 22b is for 1 sweep period. The present experimental results
do not verify the theoretical jump phenomenon as shown in Fig. 4a.
We believe this is because the experimental gust strength varies with
the gust frequency. A corresponding PSD plotis shown by a broken
line in Fig. 23 for an average over 10 sweep periods. The theoretical
results are shown by a solid line. There is a detectable difference
in the location of the peak position (resonant frequency), 15 Hz for
the theory and 12 Hz for the experiment. This is consistent with the
results obtained for the single harmonic gust excitation as shown in
Fig. 16.

Figure 24 shows a measured velocity response to a continuous
lateral gust excitation for a flow velocity of U =44 m/s. Figure 24a
is for the first 10 sweep periods, and Fig. 24b is for 1 sweep period.

A correspondingPSD plotis shown by a brokenline in Fig. 25 for an

average over 10 sweep periods. The theoreticalresults are shown by

a solid line. There is a resonant frequency at @ =25 Hz for both the

theoretical and experimental results. Note that these results are in

the flow velocity range beyond the onset of the LCO for this system.
Results complement previous studies®'® of LCD.

Conclusions

A nonlinear response analysis of a delta wing model to periodic
and random gust loads in low subsonic flow has been presented.
The approach has made use of a three-dimensional time-domain
vortex lattice aerodynamic model and a reduced order aerodynamic
technique. Results for a single harmonic gust and a continuous fre-
quency sweep gust (modeling a random gust) have been computed
and measured both for a lower flow velocity (U < Ur) as well as
a higher flow velocity (U > Uy), where Uy is the flutter velocity.
It was shown that the effects of geometric structural nonlinearity
due to bending tension for a low aspect ratio plate on the dynamic
aeroelasticbehaviorare significant when an LCO occurs. A theoret-
ical jump response phenomenon for the nonlinear structural model
was observedboth for the singleharmonicand continuousfrequency
sweep gustexcitation. This jump phenomenonwas not observedex-
perimentally; possibly the experiment gust excitation was not a pure
single harmonic. These results complement our earlier theoretical
and experimental studies of LCO.

The fair to good quantitative agreement between theory and ex-
periment verifies that the present method has reasonable accuracy
and good computationalefficiency for nonlinear gust response anal-
ysis in the time domain. Without the use of reduced order mod-
els, calculations of the gust response as shown here would be
impractical.

Further investigationof the present method should be considered
including more general representations of atmospheric turbulence,
rather than the special periodic gust that we used here.
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