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Nonlinear Aeroelastic Response of Delta Wing to Periodic Gust

Deman Tang,¤ James K. Henry,† and Earl H. Dowell‡

Duke University, Durham, North Carolina 27708-0300

Anonlinearresponseanalysisof a simpledelta wingexcited byperiodicgust loadsin lowsubsonic� ow is presented
along with a companion wind-tunnel test program. The analytical model uses a three-dimensional time-domain
vortex lattice aerodynamic method and a reduced order aerodynamic technique. Results for a single harmonic
gust and a continuous frequency sweep gust have been computed and measured for both � ow velocities below and
above the � utter speed. A theoretical jump response phenomenon for the nonlinear structural model was observed
both for the single harmonic and the continuous frequency sweep gust excitation. Those results further con� rm
some conclusions about limit cycle oscillations above the � utter speed and complement our earlier theoretical
and experimental studies. Also an experimental investigation has been carried out in the Duke wind tunnel using
a rotating slotted cylinder gust generator and an Ometron VPI 4000 scanning laser vibrometer measurement
system. The fair to good quantitativeagreement between theory and experiment veri� es that the present analytical
approach has reasonable accuracy and good computational ef� ciency for nonlinear gust response analysis in the
time domain. Without the use of reduced order models, calculations of the gust response for the nonlinear model
treated here would be impractical.

Nomenclature
ai , b j = generalized coordinates in x and y directions,

respectively
c = delta wing root chord
D = delta wing plate bending stiffness
E = Young’s modulus
h = delta wing plate thickness
km, kn = numbers of vortex elements on delta wing in x and

y directions, respectively
kmm = total number of vortices on both the delta wing and

wake in the x direction
L = delta wing span
m = delta wing panel mass/area, hq m

mxy = number of delta wing modal functions in the x and
y planes de� ning u and v

nxy = number of delta wing modal functions in the z
direction de� ning w

Q i j = generalized aerodynamic force
q, Çq = state space vector
qn = generalized coordinate in the z direction
Ra = size of reduced order aerodynamic model
Rx , Ry , Rz = rotational de� ections in x, y, and z directions
t = time
U = airspeed
UF = critical � utter velocity
Ui , V j = modal functions in x and y directions
u, v = in-plane displacements
Wk = transverse modal function in z direction
w = plate transverse de� ection
wg , wg0 = nondimensional lateral gust velocity and amplitude
X, Y = right and left eigenvectormatrices of vortex lattice

eigenvalue model
x , y = streamwise and spanwise coordinates
Z = eigenvalue matrix of vortex lattice

aerodynamic model
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z = normal coordinate
C = vortex strength
D p = aerodynamic pressure loading on panel
D p = nondimensionalaerodynamic pressure,

D p / ( q 1 U 2)
D t = time step, D x / U
D x = plate element length in the streamwise direction
µ = state space vector
m = Poisson’s ratio
q 1 , q m = air and plate densities
s = time parameter,

p
(mc4 / D), s

x = frequency
¢ = d( )/dt

Introduction

T HE study of atmospheric turbulence and its in� uence on air-
craft operation and design has been of concern to many in-

vestigators. Areas of interest have included the measurement and
modeling of atmospheric turbulence, as well as the response and
structural design of aircraft encountering such turbulence or gusts.
In the late 1980s, the Federal Aviation Administrationrequestedas-
sistance from NASA for initial evaluationof a candidatemethod for
analysis of gust loads on aircraft with nonlinearities.The statistical
discretegust (SDG)method1 hasbeenproposedto permitanalysisof
nonlinear aircraft models for gust loads. As a time-domain method,
it would also permit the computation of time-correlatedgust loads.
NASA conductedan evaluationof the SDG method, focusing on its
relationship to existing linear methods.2

Recently,a three-dimensionaltime-domainvortex latticeaerody-
namic model and reduced order aerodynamic techniquewas used3,4

to investigate the � utter and limit cycle oscillation (LCO) char-
acteristics of cantilevered low aspect ratio, rectangular and delta
wing–plate structure models at low subsonic � ow speeds. It has
been shown that for a plate restrained at its root, bending/tension
or geometrical nonlinearities can produce LCO amplitudes of the
order of the plate thickness. A wind-tunnel model has been tested
to provide a quantitative experimental correlation with the theoret-
ical results for the LCO response itself.5 In the present paper this
method is extended to calculate and measure gust response when
the time-correlatedgust loads are known.

A few years ago, a rotating slotted cylinder (RSC) gust generator
was installedin the Duke University low-speedwind tunneland was
used to generate a gust excitation � eld including a sinusoidal gust
or a linear frequencysweep gust excitation.6 This gust � eld can also
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simulate turbulence with a uniform power spectral density over a
certain frequency band in the lateral and longitudinal directions.7,8

Following the work of Ref. 5, in the present paper we develop a
mathematical model and computational code in the time domain to
calculate the nonlinear gust response of a delta wing model at low
subsonic � ow speeds. Sinusoidal and linear frequency sweep gust
loads are used. To validate the theoreticallypredicted gust response
characteristics of the delta wing, an experimental investigation has
been carried out in the Duke University wind tunnel using an RSC
gust generatorand an Ometron VPI 4000 scanning laser vibrometer
measurementsystem9 to measurede� ections(velocities) of thedelta
wing. The results may be helpful in better understandingphysically
the nonlinear aeroelastic response of a delta wing model to gust
loads.

State-Space Equations
A schematic of the delta wing-plate geometry with a three-

dimensional vortex lattice model of the unsteady � ow is shown
in Fig. 1. The aeroelastic structure/� uid state-space equations are
described as follows.

Nonlinear Structural Equations

The nonlinearstructuralequationswere derived from Hamilton’s
principleand the Lagrangeequationsbasedon the von Kármán plate
equations using the total kinetic and elastic energies and the work
done by applied aerodynamic loads on the plate. Modal expansions
for the plate de� ection are substituted into the energy expressions
and then into Lagrange’s equations to yield equationsof motion for
each structural modal coordinate. As is well known, von Kármán’s
plate equations take into account the nonlinearcouplingbetween in-
planeand out-of-planeplatemotion as a result of retainingquadratic
terms in the strain–displacement equations. Physically there is a
stiffening of the plate due to an in-plane tension that increases
quadraticallywith increasing out-of-planedisplacement.

We expand the transverseor out-of-planedisplacementw and the
in-plane displacements u and v as follows:

u = ^
i

ai (t )Ui (x , y) (1)

v = ^
j

b j (t)V j (x, y) (2)

w = ^
k

qk(t )Wk (x , y) (3)

where the transverse natural mode function Wk(x , y) is calculated
using a two-dimensional � nite element method for the delta wing
plate based on a standard computational code. The in-plane natural
mode functions Ui (x , y) and V j (x , y) are calculated using a three-
dimensional � nite element method for the delta wing. In this latter
computationalmodel, the transversedisplacementw is constrained,
and only the in-planemode functionsare extracted.These functions
satisfy the boundary conditions of the cantilevered delta wing.

Here, ai , b j , and qk are normalized by the plate thickness h and
x and y by c and L , respectively.

Fig. 1 Aeroelastic model of a delta wing; aerodynamic vortex lattice grid is shown, a � nite element grid for the structural model is also used.

It is assumed that all of the nonconservative forces act in the
z direction only and the in-plane inertia may be neglected. Thus,
the in-plane equations of motion are determined from the stretch-
ing strain energy and Lagrange’s equation. The nondimensional in-
plane (u, v ) equations are then

^
p

C j
pap + ^

g

C j
g bg = C j (4)

^
p

Ds
pap + ^

g

Ds
gbg = Ds (5)

where C j and Ds are nonlinear (quadratic) functions of the delta
wing transverse de� ection. For details of the coef� cient terms
C j

p , C j
g , Ds

p , and Ds
g and the terms C j and Ds , see Ref. 5.

The transverse equation is formed by substituting the kinetic,
bending, and stretching energy expressions into Lagrange’s equa-
tion. The nondimensionalequation is

^
m

Ak
m[q̈m + 2x m n m Çqm + x 2

mqm] +
F k

N

s 2
+

Qk

s 2
= 0 (6)

where Ak
m are constant coef� cient terms and F k

N is a (nondimen-
sional) nonlinearforce thatdependson thede� ectionof theplate (for
details, also see Ref. 5). Note that n m and x m are the mth structural
modal damping and natural frequency. Qk is the nondimensional-
ized generalized aerodynamic force see [Eq.(12)]. We will discuss
it next.

Aerodynamic Equations: Vortex Lattice Model

We assume that a spanwise uniform periodic lateral gust is used,
that is, the gust velocity is only a functionof chordwisepositionand
time, wg = wg(x , t ), and it is normalized by airspeed U . The gust
wavelength is de� ned as

lg = U / x

where x is the gust excitation frequency in hertz.
A continuous sinusoidal gust time history at the xi position on

the delta wing may be expressed as follows:

wg(x , t) = wg0 sin(2 p x t ¡ D u ) (7)

where a phase difference is de� ned as D u = 2 p xi / lg .
A continuous frequency sweep gust is also considered. It is ex-

pressed as

wg (x , t ) = wg0 sin [2 p x 1 +
2 p ( x 2 ¡ x 1)

2T
t 2 ¡ D u ] (8)

where x 1 , x 2, and T are the minimum frequency, maximum fre-
quency, and the sweep duration respectively.

The � ow about the cantilever plate is assumed to be incompress-
ible, inviscid, and irrotational. We use an unsteady vortex lattice
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method to model this � ow. A typical planar vortex lattice mesh for
the three-dimensional � ow is shown in Fig. 1. The delta wing and
wake are divided into a number of elements. In the wake and on the
wing, all of the elements are of equal size, D x , in the streamwise
direction. Point vortices are placed on the plate and in the wake at
the quarterchord of the elements.At the three-quarterchord of each
plate element, a collocation point is placed for the downwash, that
is, we require the velocity induced by the discrete vortices to equal
the total downwash arising from the unsteady motion of the delta
wing and also the gust. Thus, we have the relationship

w t + 1
i =

kmm

^
j

K i j C
t + 1
j + w t + 1

g ,i i = 1, . . . , km (9)

where w t + 1
i is the total downwashat the i th collocationpoint at time

step t + 1, C j is the strength of the j th vortex, and K i j is an aero-
dynamic kernel function. As described in Ref. 4, an aerodynamic
matrix equation is given by

A C t + 1 + B C t = wt + 1 (10)

where A and B are aerodynamic coef� cient matrices.
From the fundamental aerodynamic theory, the nondimensional

pressure is given by

D p j =
c

D x [ C t + 1
j + C t

j

2
+

j

^
i

( C t + 1
i ¡ C t

i ) ] (11)

and the aerodynamic generalized force is calculated from

Qk =
q 1 U 2c4

Dh * 1

0
* 1

0

D pWk dx dy (12)

Aeroelastic State-Space Equations

Consider a discrete time history of the delta wing, q(t ), with a
constant sampling time step D t . The sampled versionof q(t) is then
de� ned by

q = (qt + 1 + qt ) / 2

and the velocity of this discrete time series is de� ned by

Çq = (qt + 1 ¡ qt ) / D t

The structuraldynamic equations(6) can be reconstitutedas a state-
space equation in discrete time form, that is,

D2µ
t + 1 + D1µt + C2 C

t + 1 + C1 C
t = ¡ F

t + 1
2

N (13)

where the vector µ is the state of the plate, {h } = { Çq, q}, and D1

and D2 are matrices describing the plate structuralbehavior.C1 and
C2 are matrices describing the vortex element behavior on the delta
wing itself.

There is a linear relationship between the downwash w at the
collocation points due to wing motion and the delta wing response
µ. It is de� ned by

w = Eµ (14)

In addition, of course, there is a downwash due to the gust given by
Eq. (7) or Eq. (8). Thus,we obtaina completeaeroelasticstate-space
equation in matrix form,

[ A ¡ E

C2 D2 ] { C

h }
t + 1

+ [ B 0

C1 D1] { C

h }
t

= { w t + 1
g

¡ F
t + 1

2
N

}
(15)

Reduced Order Aerodynamic Model

If we assume the structural response to be zero and no gust exci-
tation, then from Eq. (10) one obtains a representation of unforced
� uid motion,

A C t + 1 + B C t = 0 (16)

From Eq. (16), an aerodynamiceigenvalueproblemmay be formed.
Because the matrices A and B are nonsymmetric,we must compute
the right and left eigenvalues and eigenvectors of the generalized
eigenvalue problem.

Let X and Y be the right and left eigenvector matrices, and Z is
a diagonal matrix whose diagonal entries contain the eigenvalues.
The right and left eigenvectors are orthogonal with respect to the
matrices A and B . We normalize the eigenvectorssuch that they are
orthonormal with respect to A.

Let the point vortex vector C be a linear combination of the Ra

right eigenvectors (where usually in practice Ra ¿ total number of
aerodynamiceigenvalues), that is,

C = X Ra °

where ° is the vector of the aerodynamic modal coordinates. To
account for the neglected eigenmodes, therefore, we use a quasi-
static correction that accounts for much of their in� uence. Let

C = C s + C d = C s + X Ra °d

where the � rst term on the right-hand side is a quasi-static solution
of the vortex � ow and the second term is a dynamic perturbation
solution. By de� nition, the quasi-static portion C s is given by

[A + B]C t
s = wt + wt

g (17)

where wt and wt
g are the downwashes at time step t . Compare

Eqs. (10) and (17). Note Eq. (17) may be inverted once to deter-
mine C t

s in terms of wt + wt
g and does not need to be evaluated at

each time step.
Thus, the reduced order model with static correction is given by

[ I ¡ Y T
Ra [I ¡ A( A + B) ¡ 1]E

C2 X Ra D2 + C2( A + B) ¡ 1 E ] { c d

h }
t + 1

+ [ ¡ Z Ra +Y T
Ra B( A + B) ¡ 1 E

C1 X Ra D1 + C1(A + B) ¡ 1 E ] { c d

h }
t

= { 0

¡ FN }
t + 1

2

+ [ Y T
Ra [I ¡ A( A + B) ¡ 1]

¡ C2( A + B) ¡ 1 ] {wg}t + 1

+ [ ¡ Y T
Ra B( A + B) ¡ 1

¡ C1(A + B) ¡ 1 ] {wg}t (18)

Numerical Results and Discussions
The mathematical model is a simple delta wing con� guration

with a leading-edge sweep of 45 deg. The model was constructed
from 3

32 -in.-thick plastic (Lucite material) plate. Poisson’s ratio is
m = 0.45. A structural modal damping ratio of 0.04 (determined
from experiment) was used for all modes.

The theoretical prediction is based on Eq. (18). We use the aero-
dynamic vortex lattice model including 120 vortex elements on
the delta wing (km = kn = 15), 525 vortex elements in the wake
(kmm =50), and 9 reduced aerodynamic eigenmodes Ra = 9. The
vortexrelaxationfactorwas taken to be a =0.992 (Ref. 3). The delta
wing structural modal numbers were nxy =10 in the out-of-plane
and mxy =10 in the in-plane directions, respectively. The mesh
of the � nite element model for the out-of-plane structural model
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a) Increasing linear frequency sweep process from 0 to 40 Hz

b) Decreasing sweep process

Fig. 2 Theoretical linear frequency sweep time histories.

is 30 £ 30, and thus, the delta wing was modeled using 900 quadri-
lateral plate elements. The mesh of the three-dimensional� nite ele-
ment model for the in-plane structuralmodel is 30 £ 30 £ 1, and the
delta wing was modeled using 961 solid elements with 1921 nodes.
The nodes at the clamped root chord satisfy geometric boundary
conditions, that is, w = u = v = Rx = Ry = Rz =0.

The theoretical� rst 10 natural frequenciesare 7.47, 29.61,33.84,
70.27, 83.78, 107.01, 132.95, 143.91, 153.67, and 180.58 Hz. The
theoretical� utter velocityof this model without a gust is 40.25 m/s,
and the corresponding� utter frequency x F is 21.25 Hz.

The theoreticallateral gust velocity amplitudewg0 is 0.75 deg for
both single harmonic and linear frequency sweep gust loads. For
the latter, the minimum and maximum frequenciesare 0 and 40 Hz,
and the sweep duration T is 2.8 s, [recall Eq. (8)].

Figures 2a and 2b show the theoretical linear frequency sweep
time histories. Figure 2a is an increasing linear frequency sweep
process from 0 to 40 Hz and Fig. 2b is a decreasing sweep process.

Results for Flow Velocities Lower Than UF

A typical frequency-response curve at the measurement point
located near the tip of delta wing is shown in Fig. 3 for U =20 m/s
obtained from a single harmonic excitation.An rms value is shown
because the response is not a pure harmonic motion.When different
initial conditions were used, we can obtain two different response
amplitudes, as shown by the solid and broken lines. When the exci-
tation frequency continually increases from 0 to 40 Hz, the results
are shown by the solid line. The results for decreasing frequency
are shown by the broken line. There is a jump response because
of the bending/tension or geometrical nonlinearities of the delta
wing plate. For comparison, a result from a linear structural model
[i.e., FN =0 in Eq. (18)] is also plotted in Fig. 3, as shown by the
dash–dot line. The nonlinear response generally has a higher reso-
nant frequencyand smalleramplitudethan that for the linearsystem.
Note the resonant frequency of the linear system is 8.5 Hz. From a
fast Fourier transform (FFT) analysis, a 3 x frequency component

Fig. 3 Frequency response curve to the singleharmonicgust excitation
for U = 20 m/s.

a) Increasing linear frequency sweep process

b) Decreasing sweep process

Fig. 4 Gust response time history to a linear frequency sweep gust
load, for U = 20 m/s.

response caused by the geometrical nonlinearity is observable (this
is not shown in Fig. 3, which is the rms response).

Typical theoretical results for the transverseresponse near the tip
of delta wing to a frequency sweep gust excitation are shown in
Figs. 4a and 4b for U =20 m/s. Figure 4a corresponds to an in-
creasing linear frequency sweep gust excitation and Fig. 4b to a de-
creasing frequency sweep. From the envelope of this time response,
there is a jump phenomenonfor both gusts, but the time correspond-
ing to the maximum response amplitude is different. One is 2.25 s
corresponding to an excitation frequency x =15 Hz (Fig. 4a), and
the other is 3.19 s corresponding to x =11.56 Hz (Fig. 4b). For a
linear frequency sweep gust, an instantaneous frequency is de� ned
by

x =
du

dt
= x 1 +

x 2 ¡ x 1

T
t (19)



TANG, HENRY, AND DOWELL 159

To characterize the nonlinear gust response behavior in an ap-
proximate way, we form an average envelope from the upper and
lower envelopeof this time response,and then transfer this averaged
envelope to a frequency response curve using Eq. (19), as shown in
Fig. 5. The response amplitude is taken as a peak value correspond-
ing to each excitation frequency. The right and left arrows indicate
a sweep direction. Compare these results with those in Fig. 3 for
a single frequency excitation; the two curves are nearly the same
beyond the resonant frequency range. Note in particular they show
the same jump trends.

Results for Flow Velocities Higher Than UF

As is known from Ref. 5, the delta wing model has an LCO
when the � ow velocitiesare higher than UF ( without a lateralgust).
Now with the gust excitation applied, typical frequency response
(rms) curves near the tip of the delta wing are shown by a solid
line (increasingfrequencyexcitation) and a broken line (decreasing
frequency excitation) in Fig. 6 for U =44 m/s as obtained from a
single harmonic excitation.When x =0 Hz, the responseamplitude
is equal to the LCO value and the oscillation frequency is 22.2 Hz.
When x =0.1 Hz, the vibration behavior is entirely changed, as
shown in Fig. 7, where clearly the time history is no longer simple
harmonic. Figure 8 shows a typical time history and corresponding
FFT for x =12 Hz. Again we found there is a detectable 3x fre-
quency component in addition to a dominant x component for this
nonlinear system.

Similar to Fig. 4, a theoretical result for the transverse response
near the tip of delta wing to a frequency sweep gust excitation is
shown in Figs. 9a and 9b for U =44 m/s. It is seen that the gust load
is initiated at 1.2 s. Before that time, a natural LCO is shown. From
an averagedenvelopeof this time response,a jump phenomenonfor
both sweep excitationsis found.The jump occursat 2.25s forFig. 9a
and 3.19 s for Fig. 9b. The instantaneousgust excitationfrequencies
corresponding to these jump times are x =25 and 21.7 Hz. The
results are very similar to those for U =20 m/s.

Fig. 5 Envelop behavior of a linear frequency sweep gust load for
U = 20 m/s.

Fig. 6 Frequency response curve to the singleharmonicgust excitation
for U = 44 m/s.

Fig. 7 Time history of gust response to a single harmonic excitation at
! = 0.1 Hz for U = 44 m/s.

a) Time history

b) FFT analysis

Fig. 8 Gust response to a single harmonic excitation at ! = 12 Hz for
U = 44 m/s.

When we decrease the gust strength wg0 from 0.75 to 0.1 deg,
the natural LCO behavior has a relatively greater in� uence on the
gust response. Figure 10 shows a theoretical result for the trans-
verse responsenear the tip of the delta wing to the frequency sweep
gust excitation for U = 44 and wg0 =0.1 deg. Comparing Fig. 10 to
Fig. 9, we � nd three differences:

1) The response amplitude becomes smaller for the whole fre-
quency range for the smaller gust excitation.

2) The jump phenomenonat the higher frequencydisappears,and
the frequency response curves made from an averaged envelope of
these time responses are very similar for both the increasing and
decreasing linear frequency sweep processes. This means that the
smaller gust load is not suf� cient to excite a jump response of the
nonlinear system.

3) The natural LCO behaviorhas a larger relative in� uence in the
gust response for the smaller gust excitation.
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a) Increasing linear frequency sweep process

b) Decreasing sweep process

Fig. 9 Gust response time history to a linear frequency sweep gust
load, for U = 44 m/s and wg0 = 0.75 deg.

a) Increasing linear frequency sweep process

b) Decreasing sweep process

Fig. 10 Gust response time history to a linear frequency sweep gust
load, for U = 44 m/s and wg0 = 0.1 deg.

Fig. 11 FFT analysis of gust response to the single harmonic excita-
tion at frequencies ! = 1, 10, 20, 25, and 30 Hz, for U = 44 m/s and
wg0 = 0.1 deg.

a) Time history

b) FFT analysis

Fig. 12 Gust response to a single harmonic excitation at ! = 30 Hz for
U = 44 m/s and wg0 = 0.1 deg.

To con� rm these results, gust responses to a single harmonic
excitation at x = 1, 10, 20, 25, and 30 have been calculated. The
results are shown in Fig. 11 for an FFT analysisof the displacement
response.It is foundthat there is a maximumamplitudeat x = 10Hz,
which corresponds to t =1.94 s in Fig. 10a.

Figure 12 shows the time history and the corresponding FFT
analysis for x =30 Hz. In Fig. 12b, a dashed line indicates the
result from the natural LCO for reference, that is, x =0 Hz, and
the solid line is for x =30 Hz. Also from Fig. 12a we � nd the time
history of response includes a strong LCO component. Note the
gust excitation in this case acts to quench or diminish the LCO. Of
course, such a result can only occur for a nonlinear system.

To summarize this subsection, Fig. 13 showing nondimensional
transverse displacement (rms) near the tip of the delta wing vs � ow
velocity has been prepared for a range of gust frequency, x =0, 1,
10, and 20 Hz and a gust strength of wg0 =0.75 deg. For x =0, this
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Fig. 13 Nondimensional transverse displacement (rms) vs the � ow
velocity for gust frequencies ! = 0, 1, 10, and 20 Hz and gust strength
wg0 = 0.75 deg.

curve indicatesa naturalLCO as describedin Ref. 5. For x =10 Hz,
the response has a jump at a � ow velocity U = 8 m/s. For � ow ve-
locities lower than U = 8 m/s, the gust responses are small, but for
larger � ow velocities, the gust responses become large and increase
with increasing � ow velocity. These response amplitudes are larger
than the natural LCO amplitude. As the � ow velocity increases
and exceeds a certain value, the aeroelastic system can undergo
nonlinear resonant response due to a dynamic coupling between
the aerodynamics and the nonlinear dynamic structural de� ection.
Thus, a jump phenomenon occurs, and a larger oscillation occurs.
These phenomena also occur for higher frequency gust loads, as
shown for x = 20 Hz. Compare the results from x =10 Hz to those
from x = 20; the jump velocity (U =31 m/s) and the response am-
plitude (after the jump) of the latter are larger than those of the
former.

Correlation Between Theoretical
and Experimental Results

The experimentalmodel has the same parametersas in the numer-
ical example discussed earlier. The root chord was locally clamped
(cantilevered), and the length of the cantilever root was 9 in. (60%
root chord). The clamping was symmetric about the center of the
root chord of the model. The length of the root chord was 15 in.
The clamped root of this model is � xed on a root support mecha-
nism that is placed at the top of the tunnel. The delta wing model
is mounted in a vertical position in the center of the test sec-
tion that eliminates gravitational preload in the out-of-planedirec-
tion. To avoid the effect of the wind-tunnel body vibration on the
model response, the root support mechanism of the model was sep-
arated from the ceiling of the tunnel. The mechanism is directly
mounted to a heavy support frame that is supported to the ground.
The experimental � rst four natural frequencies are 7.5, 31, 35, and
76 Hz. The agreement with the corresponding theoretical results
is good.

The gust was created by placing an RSC behind an airfoil up-
stream of the delta wing model. The gust generatorcon� guration in
the wind tunnel had two airfoils or vanes and two RSCs. The dis-
tancebetweenthesevaneswas 12 in. For detailsof thegustgenerator
design, see Ref. 6.

Structural responsemeasurements were made using the Ometron
VPI 4000 scanning laser vibrometer system.9 The VPI sensor is a
noncontacting transducer that uses optical interferometry and elec-
tronic frequency measurements to determine the frequency shift of
a beam of light re� ected from a moving surface. The system then
uses frequency tracking methods to convert the frequency shift to
an analog voltage corresponding to the velocity of the moving sur-
face. Because there is no contact between the laser and the delta
wing, the system is capable of making point velocity FFT or power
spectrum measurements without altering the dynamics of the delta
wing or the � ow across it. A photograph of the wind-tunnel model,
gust generator, and the laser vibrometer system is shown in Fig. 14.

Fig. 14 Wind-tunnel model, gust generator, and the laser vibrometer
system.

a) Time history

b) FFT

Fig. 15 Lateral gust of single harmonic gust excitation for ! = 9.5 Hz
and U = 20 (m/s).

Fig. 16 Velocity frequency response to the single harmonic gust exci-
tation for U = 20 m/s.
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Single Harmonic Gust Excitation

A typical measured gust angle (lateral gust wave) generated by
the RSC gust generatoris shown in Fig. 15a for an airstreamvelocity
of U = 20 m/s and cylinder rotation speed of x s =5 Hz. The gust
dominant frequency has been shown to be 2x s . A corresponding
FFT plot is shown in Fig. 15b. The gust angle of the � rst harmonic
frequency (2x s = 10 Hz) is 0.75 deg, and the second harmonic
(4x s = 20 Hz) is 0.1 deg. See Ref. 6 for a discussion of gust � eld
measurement.

a) Time history

b) FFT

Fig. 17 Measured velocity response to the single frequency gust exci-
tation for ! = 10.5 Hz and U = 20 (m/s).

Fig. 18 Vibration shape and correlation between theoretical and experimental nondimensional transverse velocity amplitude for ! = 10.5 Hz and
U = 20 m/s.

Figure 16 shows a velocity frequency response curve near the
tip of the delta wing for � ow velocity U = 20 m/s. The theoretical
results are shown by a solid line and the experimental results are
shown by a dashed line with a 4 . Note that in Fig. 16 the measured
velocity response is not a pure harmonic motion; therefore, we use
an average rms method to characterize the response for correlation
purposes.The samplingrate is 256point/s, D t =1/ 256,and the total
sampling length is 600 points.The measuredrms velocity Çwrms is de-
termined from these data. The quantitativeagreement is reasonably
good. The experimental � rst resonant frequency is about 12 Hz,
which is lower than the theoretical value (15 Hz). This is because
the present experimental apparatus does not give a pure tone lateral
sinusoidal gust wave. Thus, it is more dif� cult to obtain an exper-
imental jump phenomenon than if we had a pure single harmonic
gust excitation.

Figure 17 shows a typical velocity time response (Fig. 17a) and
a corresponding FFT analysis (Fig. 17b). The dominant frequency
response component is located at the frequency x =10.5 Hz, and
thereare thedetectable2 x and3 x frequencycomponentsin addition
to a dominant x component for this measured nonlinear system.

Figure 18 shows the vibrationshape of the delta model during the
steady-state vibration and the correlation between theoretical and
experimental nondimensional transverse rms velocity amplitude at
U =20 m/s and x =10 Hz. The agreement is reasonably good.
Note that in the present experiment the measured rms velocity is
normalized by h x F .

Figure 19 shows the theoretical (solid line) and experimental
nondimensional transverse velocity (rms) near the tip of the delta
wing vs � ow velocity for a range of gust frequencies, x = 0, 10, and
20 Hz. The broken line with symbols , , and 4 indicate x = 0, 10,
and 20 Hz, respectively, from the experiment. These results show
a good agreement between the theory and experiment, although we
did not � nd the predictedtheoreticaljump phenomenonat U =8 m/s
for x =10 Hz and at U =31 m/s for x =20 Hz. This may also be a
result of the experimentalgust excitationhaving multiple frequency
components.

Continuous Frequency Sweep Gust Excitation

A continuous lateral gust wave generated by the linear frequency
sweep RSC/airfoil experimentalsystem for an airstream velocityof
U =20 m/s and a cylinder rotation speed from 0 to 20 Hz, that is,
gust excitation frequency from 0 to 40 Hz, is shown in Fig. 20a.
There are 10 sweep periods in 34 s, and the total sampling length is
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Fig. 19 Theoretical and experimental nondimensional transverse ve-
locity (rms) vs the � ow velocity for gust frequencies ! = 0, 10, and 20 Hz.

a) Whole time history

b) One sweep period

Fig. 20 Measured continuous lateral gust of linear frequency sweep
gust excitation for ! = 0–40 (Hz) and U = 20 (m/s).

Fig. 21 Theoretical and experimental PSD of the lateral gust excita-
tion.

a) Whole time history

b) One sweep period

Fig. 22 Measured gust response to continuous lateral gust for
U = 20 (m/s).

Fig. 23 Theoretical and experimental PSD of the velocity response to
the lateral gust excitation for U = 20 (m/s).

51,200 points. Figure 20b shows a typical lateral gust wave of one
sweep period. The gust wave is not a pure uniform linear frequency
sweep. The average angle of the linear frequency sweep gust is
about 0.75 deg. It is noted that the measured lateral gust has about
a 0.7-s time delay, that is, the restarting time of the dc motor for
each repeated cycle. This is due to the rotational inertia of the dc
motor. A correspondingpower spectra density (PSD) plot is shown
by a broken line in Fig. 21, based on an average over 10 sweep
periods.

For comparison with the experimental results, a theoretical PSD
plot is calculatedfrom a continuousfrequencysweep gust excitation
(the time history is shown in Fig. 2a) as shown by a solid line of
Fig. 21. The result is obtained by using Eq. (8) and one sweep
period. The theoretical results (solid line) and the experiment data
(broken line) are in reasonably good agreement.

Figure 22 shows a measured velocity response to a continuous
lateral gust wave excitation for a � ow velocity of U =20 m/s.
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a) Whole time history

b) One sweep period

Fig. 24 Measured gust response to continuous lateral gust for
U = 44 (m/s).

Fig. 25 Theoretical and experimental PSD of the velocity response to
the lateral gust excitation for U = 44 (m/s).

Figure 22a is for the � rst 10 sweep periods, as shown in Fig. 20a,
and Fig. 22b is for 1 sweep period. The present experimental results
do not verify the theoretical jump phenomenonas shown in Fig. 4a.
We believe this is becausethe experimentalgust strengthvarieswith
the gust frequency.A correspondingPSD plot is shown by a broken
line in Fig. 23 for an averageover 10 sweep periods.The theoretical
results are shown by a solid line. There is a detectable difference
in the location of the peak position (resonant frequency), 15 Hz for
the theory and 12 Hz for the experiment. This is consistentwith the
results obtained for the single harmonic gust excitation as shown in
Fig. 16.

Figure 24 shows a measured velocity response to a continuous
lateral gust excitation for a � ow velocity of U =44 m/s. Figure 24a
is for the � rst 10 sweep periods, and Fig. 24b is for 1 sweep period.

A correspondingPSD plot is shown by a broken line in Fig. 25 for an
averageover 10 sweep periods.The theoreticalresults are shown by
a solid line. There is a resonant frequencyat x = 25 Hz for both the
theoretical and experimental results. Note that these results are in
the � ow velocity range beyondthe onset of the LCO for this system.

Results complement previous studies6,10 of LCD.

Conclusions
A nonlinear response analysis of a delta wing model to periodic

and random gust loads in low subsonic � ow has been presented.
The approach has made use of a three-dimensional time-domain
vortex lattice aerodynamicmodel and a reduced order aerodynamic
technique. Results for a single harmonic gust and a continuous fre-
quency sweep gust (modeling a random gust) have been computed
and measured both for a lower � ow velocity (U < UF ) as well as
a higher � ow velocity (U > UF ), where UF is the � utter velocity.
It was shown that the effects of geometric structural nonlinearity
due to bending tension for a low aspect ratio plate on the dynamic
aeroelasticbehaviorare signi� cant when an LCO occurs.A theoret-
ical jump response phenomenon for the nonlinear structural model
was observedboth for the singleharmonicandcontinuousfrequency
sweep gust excitation.This jump phenomenonwas not observedex-
perimentally;possibly the experimentgust excitationwas not a pure
single harmonic. These results complement our earlier theoretical
and experimental studies of LCO.

The fair to good quantitative agreement between theory and ex-
periment veri� es that the present method has reasonable accuracy
and good computationalef� ciencyfor nonlineargust responseanal-
ysis in the time domain. Without the use of reduced order mod-
els, calculations of the gust response as shown here would be
impractical.

Further investigationof the presentmethod should be considered
including more general representationsof atmospheric turbulence,
rather than the special periodic gust that we used here.
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